Coherent nonlinear Xray fourphoton interaction with coreshell electrons

Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).
Google Scholar
Leone, S. R. & Neumark, D. M. Probing matter with nonlinear spectroscopy. Science 379, 536–537 (2023).
Google Scholar
Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002).
Google Scholar
Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).
Google Scholar
Chergui, M., Beye, M., Mukamel, S., Svetina, C. & Masciovecchio, C. Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy. Nat. Rev. Phys. 5, 578–596 (2023).
Google Scholar
Weninger, C. et al. Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013).
Google Scholar
Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000).
Google Scholar
Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).
Google Scholar
Jonas, D. M. Optical analogs of 2D NMR. Science 300, 1515–1517 (2003).
Google Scholar
Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).
Google Scholar
Stone, K. W. et al. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324, 1169–1173 (2009).
Google Scholar
Kolano, C., Helbing, J., Kozinski, M., Sander, W. & Hamm, P. Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy. Nature 444, 469–472 (2006).
Google Scholar
Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).
Google Scholar
Zhang, C., Zhang, D. & Cheng, J.-X. Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
Google Scholar
Marino, A. M., Pooser, R. C., Boyer, V. & Lett, P. D. Tunable delay of Einstein–Podolsky–Rosen entanglement. Nature 457, 859–862 (2009).
Google Scholar
Camacho, R. M., Vudyasetu, P. K. & Howell, J. C. Four-wave-mixing stopped light in hot atomic rubidium vapour. Nat. Photonics 3, 103–106 (2009).
Google Scholar
Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002).
Google Scholar
Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).
Google Scholar
Weber, T. et al. Complete photo-fragmentation of the deuterium molecule. Nature 431, 437–440 (2004).
Google Scholar
Sansone, G., Pfeifer, T., Simeonidis, K. & Kuleff, A. I. Electron correlation in real time. ChemPhysChem 13, 661–680 (2011).
Google Scholar
Bencivenga, F. et al. Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses. Sci. Adv. 5, eaaw5805 (2019).
Google Scholar
Harrington, P. M., Mueller, E. J. & Murch, K. W. Engineered dissipation for quantum information science. Nat. Rev. Phys. 4, 660–671 (2022).
Google Scholar
Avisar, D. & Tannor, D. J. Complete reconstruction of the wave function of a reacting molecule by four-wave mixing spectroscopy. Phys. Rev. Lett. 106, 170405 (2011).
Google Scholar
Schwickert, D. et al. Electronic quantum coherence in glycine molecules probed with ultrashort X-ray pulses in real time. Sci. Adv. 8, eabn6848 (2022).
Google Scholar
Fulde, P. Electron Correlations in Molecules and Solids (Springer, 2012).
Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2017).
Google Scholar
Wang, Y., Wu, H., McCandless, G. T., Chan, J. Y. & Ali, M. N. Quantum states and intertwining phases in kagome materials. Nat. Rev. Phys. 5, 635–658 (2023).
Google Scholar
Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, 1990).
Tanaka, S. & Mukamel, S. X-ray four-wave mixing in molecules. J. Chem. Phys. 116, 1877–1891 (2002).
Google Scholar
Popmintchev, D. et al. Near- and extended-edge x-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua. Phys. Rev. Lett. 120, 093002 (2018).
Google Scholar
Rouxel, J. R. et al. Hard X-ray transient grating spectroscopy on bismuth germanate. Nat. Photonics 15, 499–503 (2021).
Google Scholar
Morillo-Candas, A. S. et al. Time resolved hard X-ray/optical transient grating spectroscopy on a liquid jet. In Proc. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2023).
Ferrari, E. et al. All hard X-ray transient grating spectroscopy. Commun. Phys. 8, 257 (2025).
Google Scholar
Cavaletto, S. M., Keefer, D. & Mukamel, S. High temporal and spectral resolution of stimulated X-ray Raman signals with stochastic free-electron-laser pulses. Phys. Rev. X 11, 011029 (2021).
Google Scholar
Belabas, N. & Jonas, D. M. Three-dimensional view of signal propagation in femtosecond four-wave mixing with application to the boxcars geometry. J. Opt. Soc. Am. B 22, 655–674 (2005).
Google Scholar
Müller, A. et al. Photoionization of Ne atoms and Ne+ ions near the K edge: precision spectroscopy and absolute cross-sections. Astrophys. J. 836, 166 (2017).
Google Scholar
Williams, S., Rohlfing, E. A., Rahn, L. A. & Zare, R. N. Two-color resonant four-wave mixing: analytical expressions for signal intensity. J. Chem. Phys. 106, 3090–3102 (1997).
Google Scholar
Gel’mukhanov, F., Sałek, P., Privalov, T. & Ågren, H. Duration of x-ray Raman scattering. Phys. Rev. A 59, 380–389 (1999).
Google Scholar
Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).
Google Scholar
Li, K., Labeye, M., Ho, P. J., Gaarde, M. B. & Young, L. Resonant propagation of x rays from the linear to the nonlinear regime. Phys. Rev. A 102, 053113 (2020).
Google Scholar
Frasinski, L. et al. Dynamics of hollow atom formation in intense X-ray pulses probed by partial covariance mapping. Phys. Rev. Lett. 111, 073002 (2013).
Google Scholar
Hennies, F. et al. Resonant inelastic scattering spectra of free molecules with vibrational resolution. Phys. Rev. Lett. 104, 193002 (2010).
Google Scholar
Lundberg, M. & Wernet, P. Resonant Inelastic X-ray Scattering (RIXS) Studies in Chemistry: Present and Future, 1–52 (Springer, 2019).
Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).
Google Scholar
de Groot, F. M. et al. Resonant inelastic X-ray scattering. Nat. Rev. Methods Primers 4, 45 (2024).
Google Scholar
Guo, Z. et al. Experimental demonstration of attosecond pump–probe spectroscopy with an X-ray free-electron laser. Nat. Photonics 18, 691–697 (2024).
Google Scholar
Li, S. et al. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024).
Google Scholar
Meier, T., Schulze, A., Thomas, P., Vaupel, H. & Maschke, K. Signatures of Fano resonances in four-wave-mixing experiments. Phys. Rev. B 51, 13977–13986 (1995).
Google Scholar
Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).
Google Scholar
Li, K. et al. Super-resolution stimulated X-ray Raman spectroscopy. Nature 643, 662–668 (2025).
Google Scholar
Eckbreth, A. C. BOXCARS: crossed-beam phase-matched cars generation in gases. Appl. Phys. Lett. 32, 421–423 (1978).
Google Scholar
Prior, Y. Three-dimensional phase matching in four-wave mixing. Appl. Opt. 19, 1741–1743 (1980).
Google Scholar
Vdovin, G. & van Goor, F. LightPipes for Python. Github https://opticspy.github.io/lightpipes/ (2023).
Prat, E. et al. An X-ray free-electron laser with a highly configurable undulator and integrated chicanes for tailored pulse properties. Nat. Commun. 14, 5069 (2023).
Google Scholar
Pradervand, C. et al. A compact gas attenuator for the SwissFEL ATHOS beamline realized using additive manufacturing. J. Synchrotron Radiat. 30, 717–722 (2023).
Google Scholar
Al Haddad, A. et al. High magnification optical imaging systems for the characterization of soft X-ray focii. J. Synchrotron Radiat. 32, 1479–1490 (2025).
Google Scholar
Boyd, R. W., Gaeta, A. L. & Giese, E. in Springer Handbook of Atomic, Molecular, and Optical Physics, 1097–1110 (Springer, 2023).
Lutman, A. et al. Fresh-slice multicolour X-ray free-electron lasers. Nat. Photonics 10, 745–750 (2016).
Google Scholar
Reiche, S. & Prat, E. Two-color operation of a free-electron laser with a tilted beam. J. Synchrotron Radiat. 23, 869–873 (2016).
Google Scholar
Prat, E. et al. Widely tunable two-color X-ray free-electron laser pulses. Phys. Rev. Res. 4, L022025 (2022).
Google Scholar
Wang, G., Dijkstal, P., Reiche, S., Schnorr, K. & Prat, E. Millijoule femtosecond X-ray pulses from an efficient fresh-slice multistage free-electron laser. Phys. Rev. Lett. 132, 035002 (2024).
Google Scholar
Prior, Y. & Ben-Reuven, A. Nonimpact theory of four-wave mixing and intracollisional dynamics. Phys. Rev. A 33, 2362–2377 (1986).
Google Scholar
Rohringer, N. & London, R. Atomic inner-shell X-ray laser pumped by an X-ray free-electron laser. Phys. Rev. A 80, 013809 (2009).
Google Scholar
Pfeifer, T., Jiang, Y., Düsterer, S., Moshammer, R. & Ullrich, J. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35, 3441–3443 (2010).
Google Scholar
Frasinski, L. J., Codling, K. & Hatherly, P. A. Covariance mapping: a correlation method applied to multiphoton multiple ionization. Science 246, 1029–1031 (1989).
Google Scholar
تنويه من موقعنا
تم جلب هذا المحتوى بشكل آلي من المصدر:
yalebnan.org
بتاريخ: 2026-01-15 06:42:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقعنا والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.


