Palaeometabolomes yield biological and ecological profiles at early human sites

Zhang, A., Sun, H., Wang, P., Han, Y. & Wang, X. Recent and potential developments of biofluid analyses in metabolomics. J. Proteomics 75, 1079–1088 (2012).
Google Scholar
Endo, A., Murakawa, S. & Shimizu, H. Purification and properties of collagenase from a Streptomyces species. J. Biochem. 102, 161–170 (1987).
Google Scholar
Ashley, G. M. et al. Paleoenvironmental and paleoecological reconstruction of a freshwater oasis in savannah grassland at FLK North, Olduvai Gorge, Tanzania. Quat. Res. 74, 333–343 (2010).
Google Scholar
Barboni, D. et al. Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quat. Res. 74, 344–354 (2010).
Google Scholar
Fernández-Jalvo, Y. et al. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). J. Hum. Evol. 34, 137–172 (1998).
Google Scholar
Kovarovic, K., Slepkov, R. & McNulty, K. P. Ecological continuity between Lower and Upper Bed II, Olduvai Gorge, Tanzania. J. Hum. Evol. 64, 538–555 (2013).
Google Scholar
Euw, S. V et al. Organization of bone mineral: the role of mineral–water interactions. Geosciences 8, 466 (2018).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
Google Scholar
West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).
Google Scholar
Padian, K. & Ricqlès, A. D. Inferring the physiological regimes of extinct vertebrates: methods, limits and framework. Phil. Trans. R. Soc. B 375, 20190147 (2020).
Google Scholar
Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012).
Google Scholar
Lüdecke, T. et al. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Karonga Basin, East African Rift System). J. Hum. Evol. 90, 163–175 (2016).
Google Scholar
Schrenk, F., Bromage, T. G., Sandrock, O. & Gorthner, A. Paleoecology of the Malawi Rift: Vertebrate and invertebrate faunal contexts of the Chiwondo Beds, northern Malawi. J. Hum. Evol. 28, 59–70 (1995).
Google Scholar
Huber, B., Larsen, T., Spengler, R. N. & Boivin, N. How to use modern science to reconstruct ancient scents. Nat. Hum. Behav. 6, 611–614 (2020).
Google Scholar
Badillo-Sanchez, D., Davies-Barrett, A. M., Ruber, M. S., Jones, D. J. L. & Inskip, S. A. Archaeometabolomics characterizes phenotypic differences in human cortical bone at a molecular level relating to tobacco use. Sci. Adv. 10, eadn9317 (2024).
Google Scholar
Enlow, D. H. Principles of Bone Remodeling (Charles C. Thomas, 1963).
Albuquerque, U. P., Ramos, M. A. & Melo, J. G. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies. J. Ethnopharmacol. 140, 197–201 (2012).
Google Scholar
Balunas, M. J. & Kinghorn, A. D. Drug discovery from medicinal plants. Life Sci. 78, 431–441 (2005).
Google Scholar
Sumner, L. W., Mendes, P. & Dixon, R. A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836 (2003).
Google Scholar
Wiemann, J. A Fundamental Exploration of the Interactions Between Minerals and Life’s Building Blocks in Deep Time. PhD thesis, Yale Univ. (2021).
Colleary, C., Lamadrid, H. M, O’Reilly, S. S, Dolocan, A. & Nesbitt, S. J Molecular preservation in mammoth bone and variation based on burial environment. Sci. Rep. 11, 2662 (2021).
Google Scholar
Schweitzer, M. H. et al. Heme compounds in dinosaur trabecular bone. Proc. Natl Acad. Sci. USA 94, 6291–6296 (1997).
Google Scholar
Wiemann, J. et al. Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ 5, e3706 (2017).
Google Scholar
Boatman, E. M. Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Sci. Rep. 9, 15678 (2019).
Google Scholar
Bertazzo, S. et al. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat. Commun. 6, 7352 (2015).
Google Scholar
Yang, J., Kojasoy, V., Porter, G. J. & Raines, R. T. Pauli exclusion by n→π* interactions: implications for paleobiology. ACS Cent. Sci. 10, 1829–1834 (2024).
Google Scholar
Wiemann, J. et al. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 9, 4741 (2018).
Google Scholar
Filipowska, J., Tomaszewski, K. A., Niedźwiedzki, Ł, Walocha, J. A. & Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20, 291–302 (2017).
Google Scholar
Godwin, L., Tariq, M. A. & Crane, J. S. in StatPearls (StatPearls Publishing, 2022).
Wongdee, K. et al. Osteoblasts express claudins and tight junction-associated proteins. Histochem. Cell Biol. 130, 79–90 (2008).
Google Scholar
Weinger, J. M. & Holtrop, M. E. An ultrastructural study of bone cells: The occurrence of microtubules, microfilaments and tight junctions. Calcif. Tissue Res. 14, 15–29 (1974).
Google Scholar
Prêle, C. M., Horton, M. A., Caterina, P. & Stenbeck, G. Identification of the molecular mechanisms contributing to polarized trafficking in osteoblasts. Exp. Cell. Res. 282, 24–34 (2003).
Google Scholar
Saitta, E. T. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife 8, e46205 (2019).
Google Scholar
Brettell, R. C. et al. ‘Choicest unguents’: molecular evidence for the use of resinous plant exudates in late Roman mortuary rites in Britain. J. Archaeolog. Sci. 53, 639–648 (2015).
Google Scholar
Zimmermann, M. et al. Metabolomics-based analysis of miniature flask contents identifies tobacco mixture use among the ancient Maya. Sci. Rep. 11, 1590 (2021).
Google Scholar
Li, Z. et al. Single-cell mass spectrometry analysis of metabolites facilitated by cell electro-migration and electroporation. Anal. Chem. 92, 10138–10144 (2020).
Google Scholar
Bromage, T. G., Goldman, H. M., McFarlin, S. C., Perez-Ochoa, A. & Boyde, A. Confocal scanning optical microscopy of a 3-million-year-old Australopithecus afarensis femur. Scanning Microsc. 31, 1–10 (2009).
Google Scholar
Welhaven, H. D. et al. The cortical bone metabolome of C57BL/6J mice is sexually dimorphic. J. Bone Miner. Res. 6, e10654 (2022).
Google Scholar
Denys, C., Reed, D. N. & Dauphin, Y. Deciphering alterations of rodent bones through in vitro digestion: an avenue to understand pre-diagenetic agents? Minerals 13, 124 (2023).
Google Scholar
Fernandez-Jalvo, Y., Andrews, P., Sevilla, P. & Requejo, V. Digestion versus abrasion features in rodent bones. Lethaia 47, 323–336 (2014).
Google Scholar
Feye, K. M., Baxter, M. F. A., Tellez-Isaias, G., Kogut, M. H. & Ricke, S. C. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Sci. 99, 653–659 (2020).
Google Scholar
Ashley, G. M. et al. A spring and wooded habitat at FLK Zinj and their relevance to origins of human behavior. Quat. Res. 74, 304–314 (2010).
Google Scholar
Elsas, J. D. V., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5, 173–183 (2011).
Google Scholar
Valdezate, S. in Encyclopedia of Infection and Immunity Vol. 1 (ed. Rezaei, N.) 589–613 (Elsevier, 2022).
Loria, R., Bukhalid, R. A., Fry, B. A. & King, R. R. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81, 836–846 (1997).
Google Scholar
Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).
Google Scholar
Velásquez, A. C., Castroverde, C. D. M. & He, S. Y. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 28, R619–R634 (2018).
Google Scholar
Money, N. P. in The Fungi (eds Watkinson, S. C., Boddy, L. & Money, N. P.) 1–36 (Academic Press, 2016).
Fern, K. Asparagus africanus. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Asparagus+africanus (2025).
Newton, L. E. in Aloes: The Genus Aloe Medicinal and Aromatic Plants—Industrail Profiles (ed. Reynolds, T.) 1–16 (CRC Press, 2004).
Harris, D. J. & Wortley, A. H. Monograph of Aframomium (Zingiberaceae), Vol. 104, 1–204 (American Society of Plant Taxonomists, 2018).
Fern, K. Piper capense. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Piper+capense (2025).
Fern, K. Kigelia africana. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Kigelia+africana (2025).
Labrecht, F. L. Aspects of evolution and ecology of tsetse flies and trypanosomiasis in prehistoric African environments. J. Afr. Hist. 5, 1–24 (1964).
Google Scholar
Pollock, J. N. (ed.) Training Manual for Tsetse Control Personnel, Vol. 2. Ecology and Behaviour of Tsetse (Food and Agriculture Organization of the United Nations, 1982).
Kasozi, K. I. et al. Epidemiology of Trypanosomiasis in wildlife—implications for humans at the wildlife interface in Africa. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.621699 (2021).
Google Scholar
Souron, A. in Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 29–38 (Cambridge Univ. Press, 2017).
Sandrock, O., Kullmer, O., Schrenk, F., Juwayeyi, Y. M. & Bromage, T. G. in Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (eds Bobe, R. Alemseged, Z. & Behrensmeyer, A. K.) 315–332 (Springer, 2007).
Reed, K. E. et al. in African Paleoecology and Human Evolution (eds Reynolds, S. C. & Bobe, R.) 66–81 (Cambridge Univ. Press, 2022).
Boyde, A. & Jones, S. J. Aspects of anatomy and development of bone: the nm, μm and mm hierarchy. Adv. Organ Biol. 5, 3–44 (1998).
Google Scholar
Buss, D. J., Kröger, R., McKee, M. D. & Reznikov, N. Hierarchical organization of bone in three dimensions: a twist of twists. J. Struct. Biol. X. 30 6, 100057 (2022).
Google Scholar
Grandfield, K., Vuong, V. & Schwarcz, H. P. Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the tem. Calcif. Tissue Int. 103, 606–616 (2018).
Google Scholar
Bell, L. C. & Mika, H. The pH dependence of the surface concentrations of calcium and phosphorus on hydroxyapatite in aqueous solutions. J. Soil Sci. 30, 247–258 (1979).
Google Scholar
Bell, L. C., Posner, A. M. & Quirk, J. P. Surface charge characteristics of hydroxyapatite and fluorapatite. Nature 239, 515–517 (1972).
Google Scholar
Itoh, D., Yoshimoto, N. & Yamamoto, S. Retention mechanism of proteins in hydroxyapatite chromatography – multimodal interaction based protein separations: a model study. Curr. Protein Pept. Sci. 20, 75–81 (2018).
Google Scholar
Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J. & Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 21–37 (2018).
Google Scholar
Buffrénil, V. D. Vertebrate Skeletal Histology and Paleohistology (CRC Press, 2021).
Jans, M. M. E. in Current Developments in Bioerosion (eds Wisshak, M. & Tapanila, L.) 397–413 (Springer, 2008).
Jackes, M., Sherburne, R., Lubell, D., Barker, C. & Wayman, M. Destruction of microstructure in archaeological bone: a case study from Portugal. Int. J. Osteoarchaeol. 11, 415–432 (2001).
Google Scholar
Turner–Walker, G. & Syversen, U. Quantifying histological changes in archaeological bones using BSE–SEM image analysis. Archaeometry 44, 461–468 (2002).
Google Scholar
Buss, D. J., Reznikov, N. & McKee, M. D. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J. Struct. Biol. 212, 107603 (2020).
Google Scholar
McKee, M. D., Buss, D. J. & Reznikov, N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J. Struct. Biol. 214, 107823 (2022).
Google Scholar
Reznikov, N. et al. Biological stenciling of mineralization in the skeleton: local enzymatic removal of inhibitors in the extracellular matrix. Bone 138, 115447 (2020).
Google Scholar
Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kroeger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360, eaao2189 (2018).
Google Scholar
Bertassoni, L. E. & Swain, M. V. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J. Mech. Behav. Biomed. Mater. 38, 91–104 (2014).
Google Scholar
Scott, J. E. Proteoglycan-fibrillar collagen interaction. Biochem. J 252, 313–323 (1988).
Google Scholar
Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy asmineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–615 (2005).
Google Scholar
Walsh, W. R. & Guzelsu, N. Ion concentration effects on bone streaming potentials and zeta potentials. Biomaterials 14, 331–336 (1993).
Google Scholar
Wang, Y. et al. Water-mediated structuring of bone apatite. Nat. Mater. 12, 1144–1153 (2013).
Google Scholar
Duer, M. J. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. J. Magn. Reson. 253, 98–110 (2015).
Google Scholar
Fullerton, G. D. & Amurao, M. R. Evidence that collagen and tendon have monolayer water coverage in the native state. Cell Biol. Int. 30, 56–65 (2006).
Google Scholar
Stigter, D. Evaluation of the counterion condensation theory of polyelectrolytes. Biophys. J. 69, 380–388 (1995).
Google Scholar
Israelachvili, J. N. Intermolecular and Surface Forces, 3rd edn (Academic Press, 2015).
Urbic, T. Ions increase strength of hydrogen bond in water. Chem. Phys. Lett. 610–611, 159–162 (2014).
Google Scholar
Jiang, W., Griffanti, G., Tamimi, F., McKee, M. D. & Nazhat, S. N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 212, 107592 (2020).
Google Scholar
Li, Y. et al. Metabolic acids impact bone mineral maturation. Preprint at bioRxiv https://doi.org/10.1101/2022.09.21.508894 (2022).
Hu, Y.-Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010).
Google Scholar
Abbasi-Rad, S. & Rad, H. S. Quantification of human cortical bone bound and free water in vivo with ultrashort echo tiome MR imaging: a model-based aproach. Radiology 283, 862–872 (2017).
Google Scholar
Leakey, L. S. B. Olduvai Gorge 1951–61: Volume 1, A Preliminary Report on the Geology and Fauna (Cambridge Univ. Press, 1965).
Bromage, T. G. et al. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat. Rec. 274B, 157–168 (2003).
Google Scholar
Pang, S. et al. Comparison of different protocols for demineralization of cortical bone. Sci. Rep. 11, 7012 (2021).
Google Scholar
Deng, J., Zhang, G. & Neubert, T. A. Metabolomic analysis of glioma cells using nanoflow liquid chromatography–tandem mass spectrometry. Methods Mol. Biol. 1741, 125–134 (2018).
Google Scholar
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
Google Scholar
Xu, Y. et al. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J. 40, e108428 (2021).
Google Scholar
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
Google Scholar
Sinitcyn, P. et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. 39, 1563–1573 (2021).
Google Scholar
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar
Waskom, M. L. Seaborn: statistical data visualization. J. Open Source Softw. https://doi.org/10.21105/joss.03021 (2021).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
تنويه من موقعنا
تم جلب هذا المحتوى بشكل آلي من المصدر:
yalebnan.org
بتاريخ: 2025-12-18 06:25:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقعنا والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.



